

Tailoring ADA and NAb Assays to Drug Modalities; Insights from Case Studies

Martin Roberge, Ph.D.

Cerba Research Canada, Montréal

Agenda

Introduction to Cerba Research

Immunogenicity assays: overview

Case study 1: ADA assay for ADC drug product

Case study 2: NAb assay for PEG-GCSF biosimilar

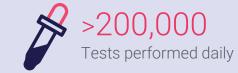
Cerba Research (within Cerba Healthcare organization)

Cerba Healthcare
Patient diagnostics

Cerba Research Clinical trials

Cerba Research Canada

- Bioanalytical specialty lab
- Central lab


1,100 Employees

12 locations/5 continents

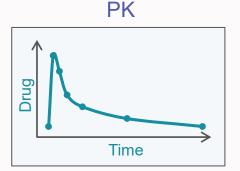
15,000 Employees

CAP/CLIA, GLP, FDA, ISO15189 and other, EMEA, IVDR

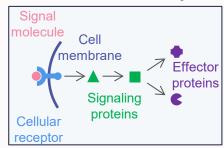
Cerba Research is a global service company

		Bioanalytical Biomarke		Molecular			Flow	Histopathology/	
	PK	Immunogenicity	(soluble)	biology	Genomics	Virology	cytometry	IHC	Microbiology
Canada (Montreal)	✓	✓	✓				✓		
USA (New York)				✓	✓	✓	✓	✓	
Ghent (Begium)			✓	✓			✓		✓
Netherlands (Schaijk, Rotterdam, Rijswijk)				✓	✓	✓			
France (Paris, Montpellier)								✓	
China (Shanghai)	✓	✓	✓	✓	✓		✓	✓	
Taiwan (Taipei)	✓		✓	✓	✓		✓	✓	
South Africa (Johannesburg)				✓	✓	✓			✓
Australia (Sydney)				✓		✓	✓		

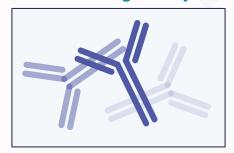
Global program management Central laboratories


(logistics / kit assembly / safety testing)

Cerba Research Canada (CR-CA, legacy CIRION)


- 25+ years of recognized experience
- Focused on biologics and biosimilars
- CAP/CLIA and GLP accredited
- Method development/validation + sample analysis for 270+ trials across numerous therapeutic areas

Central laboratory services


- 100+ validated assays
- 70 000+ study samples

Functional assays

- Activity: 13 000+ samples
- Potency: 1500+ samples

Immunogenicity

ADA/NAb

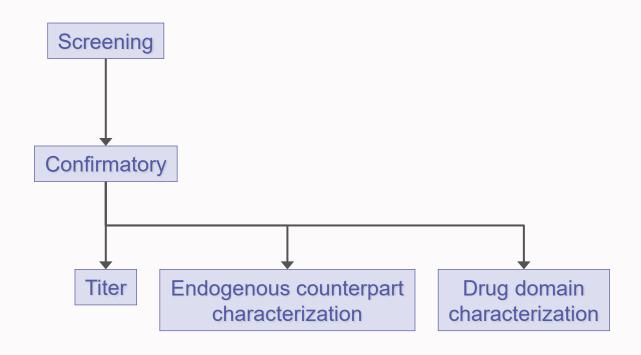
- 300+/100+ validated assays
- 77 000+/15 000+ samples

Biomarkers (soluble)

- ELISA, MSD
- Multiple panels (single plex, multiplex)

Agenda

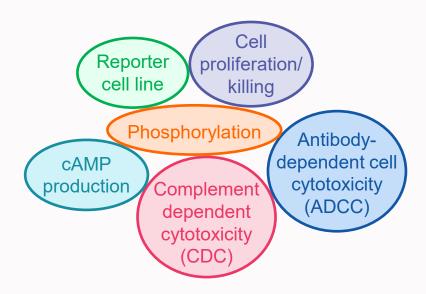
Introduction to Cerba Research


Immunogenicity assays: overview and challenges

Case study 1: ADA assay for ADC drug product

Case study 2: NAb assay for PEG-GCSF biosimilar

Immunogenicity overview: ADA testing cascades for clinical studies


Tier adaptation based on drug product

- Antibody, peptide, CAR(T) → "traditional" cascade
- Protein (e.g.: cytokine, enzyme) → possible added endogenous counterpart characterization tier
- ADC and other conjugates (e.g.: PEG, Fc, XTEN) →
 possible added drug domain characterization tier
- Vectors (e.g. AAV, AdV) → many possible cascade variations

Immunogenicity overview: Neutralizing antibody assays

Functional cell-based assays

Generally screening tier only

Competitive ligand binding assay

Alternate approach to cell-based assays, used when:

- Drug products bind to a soluble target
- Cell-based assay performance not suitable for intended purpose
 - Poor sensitivity (e.g. need for high dilution due to matrix effect)
 - Low drug tolerance
 - Lack of adequate reproducibility

Agenda

Introduction to Cerba Research

Immunogenicity assays: overview and challenges

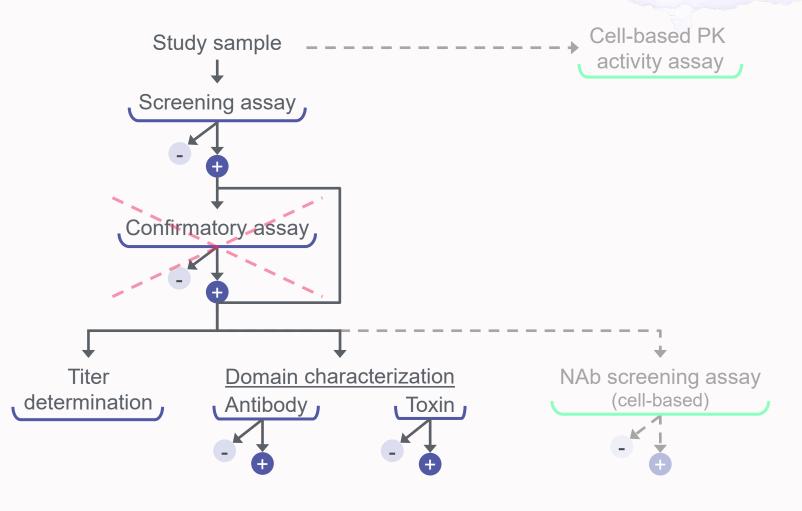
Case study 1: ADA assay for ADC drug product

Case study 2: NAb assay for PEG-GCSF biosimilar

Case Study 1: Implemented cascade

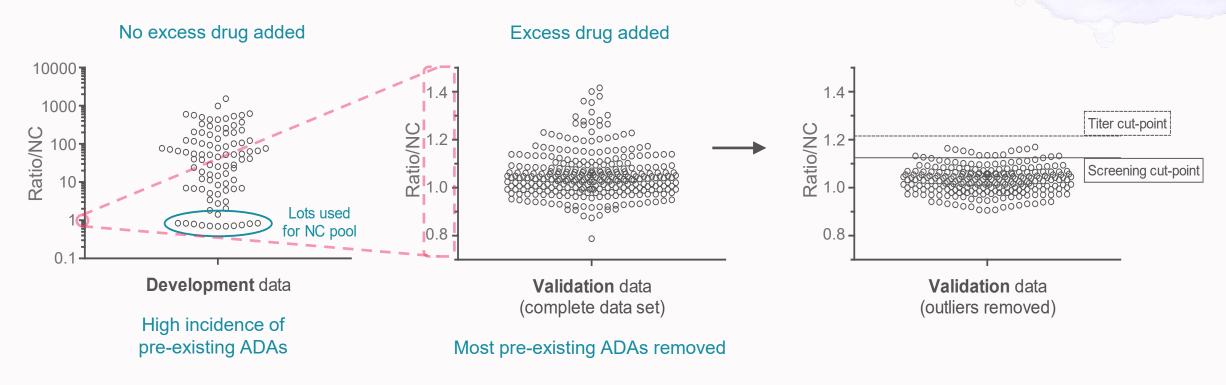
Drug product

ADC = antibody + bacterial toxin


ADA assay characteristics

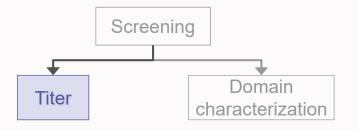
• Platform: MSD (ECL)

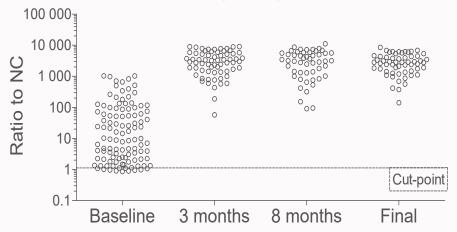
• Format: bridging + acid dissociation


• MRD: 1/40

• LOD: 23.4 ng/mL

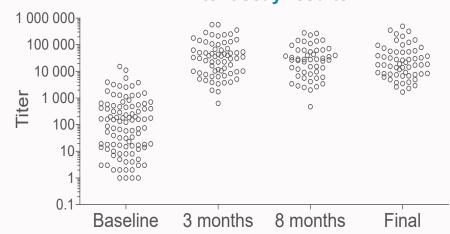
Case Study 1: Cut-point determination (validation)


- Excess drug efficiently removes pre-existing ADAs
- Standard statistical outlier removal process was performed to calculate cut-points
- Excess drug product also added for determination of the domain characterization cut-points


Case Study 1: Screening/titer assay results (sample analysis)

Phase 2 clinical trial

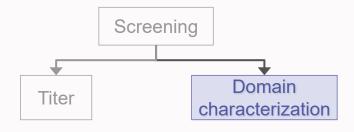
~300 clinical samples analyzed



Screening assay results

- Baseline: ~10% negative (similar to validation population)
- Post-dose: treatment-boosted ADAs

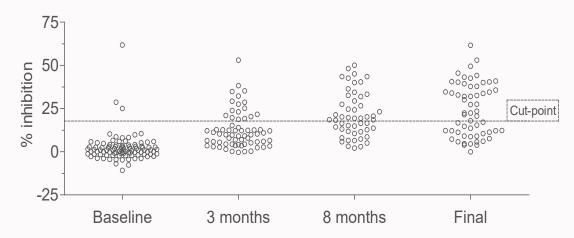
Titer assay results



Confirmation of screening assay results

In hindsight, the screening assay tier was possibly not required for this study

Case Study 1: Characterization assay results (sample analysis)

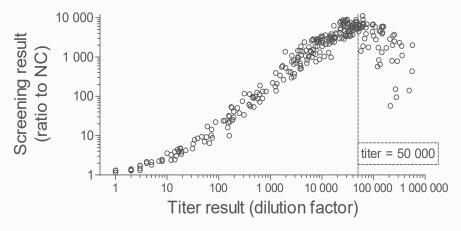


Toxin domain characterization

100 Cut-point Baseline 3 months 8 months Final

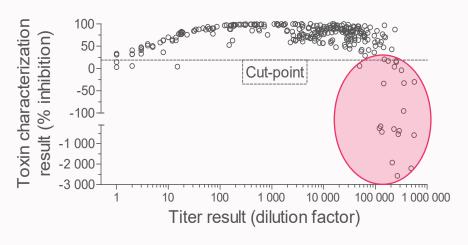
- Most pre-existing (baseline) antibodies are anti-toxin
- %inhibitions for toxin domain characterization are lower as time points increase → why?

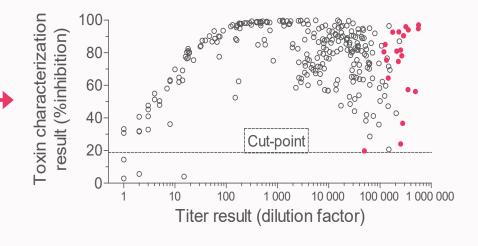
Antibody domain characterization


 Drug-induced antibodies directed against the antibody domain were present in many patients

All but 1 sample confirmed positive for at least one domain; confirmatory tier was not required

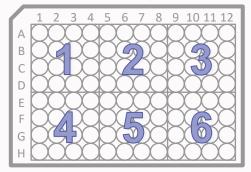
Case Study 1: Hook effect (sample analysis)

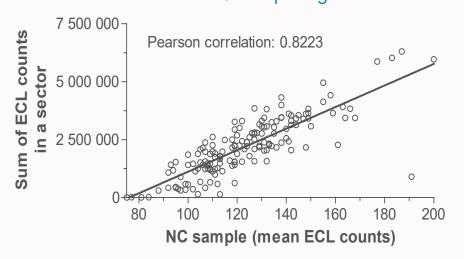

Hook effect not observed during validation, but observed during sample analysis (ECL counts up to ~200 000 vs ~1 000 000)


No effect on screening assay results → remained positive

Mitigation

- Samples with negative toxin characterization result and titer > 1/25 000 were retested diluted 1/1000
- 20 of 20 study samples retested in the toxin domain characterization assay went from negative to positive


Potentially affecting characterization assay results (false-negative result?)



Case Study 1: Signal crosstalk (sample analysis)

Plates read by sector

Crosstalk within sector observed based on NC sample signal

Effects of crosstalk

- NC samples fail threshold criteria → runs fail
- Study sample screening assay result → false-positive
- Study sample characterization assays result → false-negative (increased signal of sample with competitor)

Mitigation

Retested samples with low signal from sectors with high signal

Assay type	Original	Retest			
Screening	21 positive	3 from positive to negative			
Characterization (toxin)	20 negative	20 from negative to positive			
Characterization (antibody)	80 negative	22 from negative to positive			

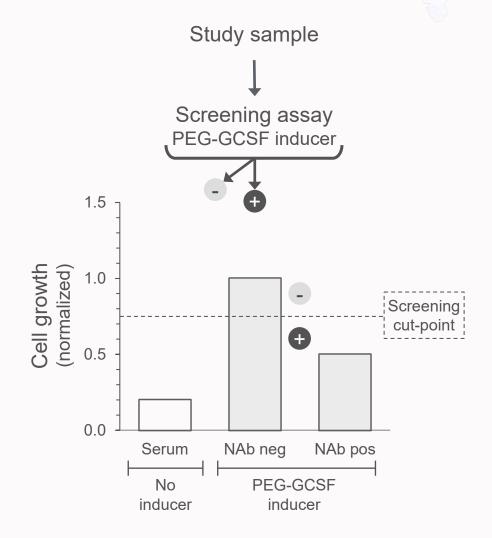
Agenda

Introduction to Cerba Research

Immunogenicity assays: overview and challenges

Case study 1: ADA assay for ADC drug product

Case study 2: NAb assay for PEG-GCSF biosimilar

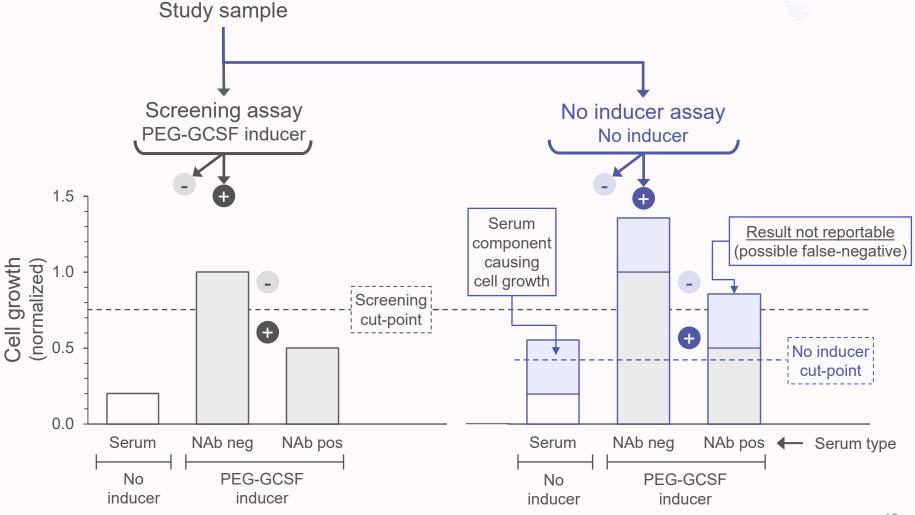


Case Study 2: NAb Assay for a PEG-GCSF Biosimilar

Standard NAb assays only include a screening tier

During development, the NFS-60 cell line was identified as an appropriate cell line for the assay based on its response to GCSF

The cell line is also responsive to the PEG-GCSF biosimilar

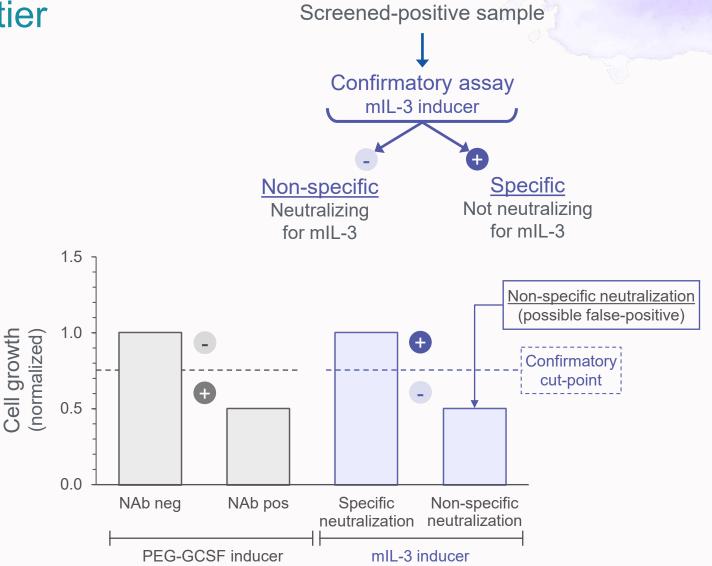


• • •

Case Study 2: "No inducer" tier

During development, some matrix components in serum (unrelated to NAbs) were identified as causing cell growth

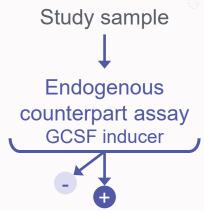
- These components could generate false-negative results
- A "no inducer tier" was added to the testing cascade

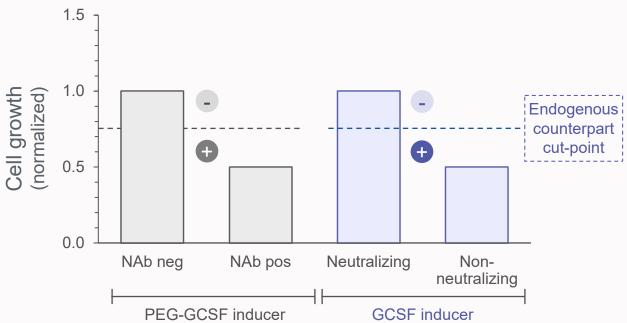


Case Study 2: Confirmatory tier

The NFS-60 cell line can also proliferate in the presence of mIL-3 (in addition to GCSF)

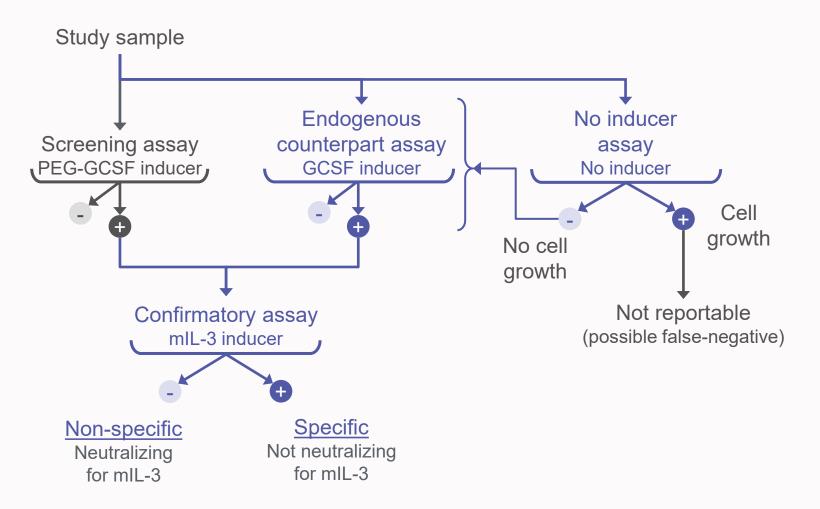
- This property allows an evaluation of the specificity of an observed positive screening result
- A non-specific neutralization can generate false-positive results
- A confirmatory tier was added to the testing cascade





Case Study 2: Endogenous counterpart tier

NAbs which neutralize the drug product (PEG-GCSF) might also neutralize endogenous GCSF


- Safety issue
- An endogenous counterpart tier was added to the testing cascade

Case Study 2: Final cascade and results summary

Summary of results for this NAb assay cascade over multiple studies

- ~400 samples tested in NAb assay
- 2% positive in No inducer assay (not reportable)
- 12% screened positive. Of which:
 - 32% neutralized mIL-3 (non-specific)
 - 。 13% also neutralized endogenous GCSF

Conclusions

ADA assays

- Adapt cascades depending on drug product (e.g. domain characterization, endogenous cross-reactivity)
- New challenges can emerge during sample analysis → immediate mitigation

NAb assays

- Designed based on mechanism of action of the drug product
- Reagents and cell lines need to be characterized and well understood
- Cascades may need more than a screening tier

Thank you!

Cerba Research Canada

Mathilde Yu, Ph.D.
André Forté, M.Sc.
Parto Kossari, M.Sc.
Justine Bélanger, M.Sc.
Frédéric Bergeron, M.Sc.
Suzie Larocque, M.Sc.
Lorella Di Donato, Ph.D.
Aurélia de Pauw, Ph.D.

Martin.Roberge@CerbaResearch.com 1-450-688-6445

Meet us at booth 12